Inventories for Mitigation Planning: The Berkeley Case

L. Thomas Tobin
Seismic Technical Advisory Group
City of Berkeley
Northern California Chapter, EERI

Soft Story Assessment Project

- **#Joan MacQuarrie**Building Official
- **# Dan Lambert**Senior Management Analyst
- **#Jim Russell**Consulting Civil Engineer
- # Degenkolb Engineers
 Project Impact Partners

- **#Interns**

 - △Andy Espinoza
 - Erik Madsen
- **#STAG**

Information Needed Depends...

- **...on the nature of the policy decision
 Detail and accuracy
- **...the resources (skills and money) available
- **XIt's more than building type and address**

Policy Decisions Consider

- Social (use, and the number and nature of occupants, parking)
- △ Administrative (number of buildings, ownership)
- Political (community impacts, consequences of earthquake losses, cost and disruption of a retrofit program, possible incentives)
- Legal (notice contents, policy intervention)
- Economic (cost of expected losses and of retrofit, rental income)
- Environmental (historic or architectural)

Data Collection

- **#**Often an iterative process that increases knowledge and accuracy
- **#**Often overlapping materials, uses and locations
- **Not just an engineering exercise, other information is crucial

△STAPLEE

Berkeley Inventories

- **#Unreinforced masonry buildings**
- **#City-owned buildings**
- #Earthquake-vulnerable buildings
- Multi unit, soft story residential buildings

Vulnerable Buildings Inventory

Done by Jim Russell and Marg Hall

- Identified typically vulnerable buildings
- Conducted quickly, a sidewalk survey

#Results

- △ A list of about 2000 URM, tilt-up and soft story buildings
- □ Defined the scope of the problem
- Specific buildings are only "suspects"

Soft Story Residential Buildings

- **#Built** a database of information in Access
 - Recorded information on each building from permit files, assessor roles
 - □ Defined four model types for loss estimates
 - Selected a subset of buildings to observe
 - 400 soft story residential buildings
 - 4,750 residential units

Prototype I

I. Four story apartment building (<15 units)

- All wood construction
- Resembles a large house
- Garage doors 1 ormore sides
- 34 Walkabout properties
- 128 Total Prototype I buildings
- 1,228 Total Prototype I units

Prototype II

II. Three story apartment building

- Tuck under parking
- Flexible diaphragm
- RM walls ground floor possible
- Steel pipe columns
- 53 Walkabout properties
- 192 Total Prototype II buildings
- 2,122 Total Prototype II units

Prototype III

III. Forustorybuilding with goundloor concrete garage

- Wood superstructure
- Rivior anacteshe awalls ground for
- Rigid Diaphægm
- 20to 40 units
- Irregularshaped
- 35Walkabout properties
- 47Total Prototype II buildings
- 957 Total Prottype II unts

Prototype IV

IV. Mega-apartment building typically four or five stories

Many Construction Types

- Rigid Diaphragm
- Irregular shaped
- Open courtyards
- 40 to 100 units
- 24 Walkabout properties
- 24 Total Prototype IV buildings
- 1,060 Total Protoype units

The Walkabout Preparation

- #Prepared a data collection form
- **#Programmed Palm Pilots**
- #Prepared itineraries for each team
- Established files for each building Recruited Volunteers

 - □ Berkeley Student Chapter
- **#Bought donuts**
- **#Briefed participants**

The Walkabout

- #Held on two Saturdays, fall 2001
- **#**Encouraged discussions and mentoring
- **#**Sidewalk observations of 146 buildings
 - Assigned a prototype
 - Percent of open ground floor area
 - Confirmed information (configuration, materials)
- #Expressed judgment (vulnerability, parking, condition)

After the Walkabout

- #Entered data
- **#Summarized results**
- **#Extrapolated to the 250 buildings not inspected**
- #Informed policy decisions
 - □ Building priorities~67
 - **△**Timeline
 - Assertiveness of the policy

Results

- **#** Expect to red tag 46 percent of the buildings with over 4,750 units
 - △17 percent have "severe" vulnerabilities
 - □29 percent have "considerable" vulnerabilities
- #Expect to yellow tag 49 percent of the buildings
- #Ground floor units in 36 percent of the buildings
- #89 percent need further attention
 - 62 percent should be retrofitted
 - 27 percent should be analyzed further
- #Parking space loss would be minimal

Results (continued)

- #Berkeley has a significant residential vulnerability threatening the availability and affordability of residences in multi unit buildings
- **#**The assessment
 - Added credibility to the list of buildings, their vulnerability and consequences for the community
 - Provided information for decisions regarding a program to encourage or require mitigation
- #The issue is on the policy agenda

Shortcomings

- **#**Quantifying vulnerability is approximate and judgments will vary
- **#Loss** estimates are only estimates
- **#Benefit cost analysis not supported**
- **#**Use of Palm Pilots has potential, but really was not that useful

Advice

- #If you need the information, get started
- Don't be put off by the engineering judgment aspect
- **Don't forget other information is just as important
- #Do what you can with the resources at hand

